Entrenamiento concurrente

Entrenamiento concurrente, ¿Las bases moleculares son la respuesta?

En el nuevo meta análisis de Coffey y Hawley (2017) (Concurrent exercise training: Do opposites distract?) nos recuerdan como en estudios directos se encuentran interferencias en detrimento de la fuerza cuando se mezclan entrenamientos de esta capacidad con la resistencia aeróbica, lo que se denomina entrenamiento concurrente con bases más que contrastadas. Además hacen referencia al que probablemente sea el mejor meta análisis sobre la temática hasta la fecha el de Wilson et al., (2012). Sabemos que por el contrario, el entrenamiento de fuerza favorecería al entrenamiento de resistencia aeróbica, algo que ya encontraron Hickson et al., (1980) y sigue repitiéndose hasta la fecha, de hecho a día de hoy resulta inseparable para un atleta o deportista de resistencia no apoyar su entrenamiento en la fuerza. Pero lo que no está claro es el por qué ocurre esta interferencia.


Por eso cada vez que expongo en una ponencia datos relacionados con el entrenamiento concurrente me baso principalmente en datos directos, DXA, aumentos/reducción de fuerza…
Y siempre hay alguien que relaciona mTOR con la síntesis de proteínas y la AMPK con la inhibición de síntesis proteica, como si esto fuera tan fácil, como si todo se resumiese en estas dos vías y como si afirmando esto estuviera todo solucionado y controlado.

¿Y qué ocurre cuando mTOR y AMPK se dan de manera simultánea en un entrenamiento?

Hace 10 años justamente, Coffey & Hawley (2007), nos demostraban como con el entrenamiento de hipertrofia, también se activaba la AMPK y puede estar activa entre 2-3 horas si a eso le añadimos cardio estará activada mucho más tiempo por lo que podría inhibir la activación de la mTOR. Además Dreyer et al., (2006) demostraron que durante un entrenamiento tradicional de hipertrofia (10 series de 10 repeticiones a 70% de 1RM al fallo), la AMPK fue activada significativamente y mTOR fue inhibida.
Por tanto debemos ser cautelosos a la hora de ir tan rápido con estas afirmaciones.

La pregunta que se hacen estos autores es: ¿La fuerza y la resistencia aeróbica son molecularmente incompatibles?

Como bien nos dicen, se pueden producir diferentes adaptaciones al músculo esquelético, desde un aumento de la masa mitocondrial, angiogénesis, alteración en el metabolismo de los sustratos o por supuesto hipertrofia miofibrilar. Y como es lógico se expresarán una proteínas u otras y se desencadenaran unas cascadas de señalización u otras de manera que cuando se dan actividades físicas con diferentes orientaciones se produce una respuesta de varias quinasas de señalización procedentes de un tipo de estímulo u otro y por supuesto se activan diferentes vías procedentes de estas quinasas que tienen objetivos dispares.

Mientras que en el entrenamiento de resistencia aeróbica se involucran varios factores de transcripción como factor respiratorio nuclear 1 y 2 (NRF-1 y NRF-2) que activarían la transcripción de genes que codificarían proteínas de la cadena respiratoria mitocondrial. Por otro lado tendríamos otras dos cascadas de señalización, la AMPK (protein quinasa) y la protein quinasa activada por mitógenos (MAPK) y que terminarían en la regulación de PGC-1α y de esta manera también la regulación de biogénesis mitocondrial.

Por otro lado tendríamos, como sabemos, la mTOR como el “interruptor” clave para la activación de señalización en la síntesis de proteínas musculares. Las proteínas que están relacionadas directamente con mTOR son las proteínas ribosomal S6 de 70KDa (S6K) y proteína de unión al factor de iniciación eucariótica 4E (4E-BP).

De manera que sería interesante tener en cuenta los datos que nos ofrecen en este estudio:

Cuando se analizaron las repuestas moleculares en el orden de ejercicios fuerza/resistencia aeróbica o ejercicios de alta intensidad.

– Las respuestas globales en las vías de señalización ‘metabólica’ y ‘miogénica’ fueron a menudo similares independientemente del modo de ejercicio, aunque en algunos casos se observaron algunas diferencias en las magnitud del efecto en la fosforilación quinasa en algunos reguladores de traducción.
– No hay claridad en los procesos de señalización aguda en el músculo esquelético en el orden de ejercicios concurrente o ejercicio de sobrecargas solo.
– En sujetos avanzados en una disciplina de trabajo bien sean de fuerza o resistencia aeróbica las respuestas moleculares son diferentes debido al historial previo, en sujetos experimentados en fuerza cuando se le aplican protocolos de resistencia aeróbica aumenta la fosforilación de la AMPK, sin embargo en sujetos experimentados en resistencia aeróbica cuando se le aplican protocolos de fuerza se ven elevadas la proteína S6K. Aunque estas elevaciones no ocurren cuando un sujeto entrena su propia disciplina. Sin embargo en sujetos sedentarios si que tienen una mayor capacidad de activación estas vías de señalización en el músculo esquelético.
– Hay estudios que muestran respuestas de señalización similares en cuanto a mTOR y AMPK en trabajos de sobrecargas y resistencia aeróbica.
– La actividad elevada de AMPK no suprime la señalización mediada por mTOR cuando el ejercicio de resistencia aeróbica se realiza antes del ejercicio de sobrecargas.
– El entrenamiento de fuerza y resistencia aeróbica inducen cambios transcripcionales (ARNm) con respuestas moleculares similares.
– Hay poca evidencia para apoyar un daño directo inducido por AMPK a las tasas de síntesis de proteínas miofibrilares y la hipertrofia muscular inducida por el entrenamiento de resistencia en humanos.
– Incluso el protagonismo de la AMPK como sensor metabólico está puesto en duda debido al papel que ha tomado una isoforma de esta molécula, AMPKα1 que se está relacionando recientemente con la activación de células satélite y regeneración muscular (Fu et al., 2015).
– Babcock et al., (2012) estudian si el ejercicio aeróbico puede atenuar la respuesta de células satélites. Y concluyen que tras un entrenamiento de sobrecargas aumenta la densidad de células satélites pero si se incorporan 90 minutos de ciclo se suprime dicha respuesta. Mientras que Joanisse et al., (2013) demostraron que el entrenamiento aeróbico interválico ampliaría el pull de células satelitales del músculo y aumentaría la actividad de las células satelitales sin hipertrofia posterior, indicando que la activación de células satelitales inducida por el ejercicio en el músculo esquelético no se limita a ejercicio de resistencia. Es decir vemos como también pueden activarse las células satélites pero no se relacionan en este caso con la hipertrofia muscular.

Por último y como resumen vemos en el esquema las diferentes adaptaciones que se pueden dar en sujetos entrenados y no-entrenados en ambas capacidades. Vemos como el potencial de entrenamiento en resistencia aeróbica hace referencia a las barras azules, el entrenamiento de sobrecargas a las barras rojas, mientras que el entrenamiento concurrente hace referencia a las negras.

Por tanto vemos como en sujetos no-entrenados el entrenamiento de resistencia aeróbica puede proporcionar una modestia hipertrofia. Y el entrenamiento de sobrecargas una modestia oxidación. Pero como vemos también se dan interferencias a corto plazo.

Y en sujetos avanzados sin embargo vemos como no se produce cross over o ganancias de fuerza o hipertrofia ninguna en atletas de resistencia aeróbica, ni viceversa a largo plazo. Y mientras el entrenamiento de resistencia aeróbica perjudica al de sobrecargas, a la inversa puede ser beneficioso.

Como vemos el estudio de las bases moleculares aún está en “pañales”, queda mucho camino por andar.

Aunque como es lógico en el momento que se arroje más luz en cuanto a la comprensión de respuestas moleculares y el entrenamiento podremos “encauzar” mejor la combinación o no de ambas capacidades en una población de sujetos u otros, pero eso a día de hoy aún está bastante lejos.

Como dicen los autores, después de una década investigando sobre las explicaciones moleculares/fisiológicas de los efectos de interferencia aún sigue “la brecha entre las ciencias básicas y aplicadas”.

Por tanto es importante que no “quitemos el ojo” a las nuevas investigaciones a este respecto pero personalmente veo más práctico y útil a día de hoy basarnos para la prescripción en estudios por pares que comparen resultados directos, prefiero saber a día de hoy ¿qué ocurre? aunque como digo o perdamos de vista el ¿cómo ocurre?

Salvador Vargas Molina
MTX-College
Prof. EADE-University of Wales
Lcd. Ciencias Actividad Física y Deporte
(Nº Colegiado: 58.248)

Bibliografía

Vernon G. Coffey and John A. Hawley (2017) Concurrent exercise training: Do opposites distract? The Journal of Physiology. doi: 10.1113/JP272270.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *